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Software Testing with Large Language Model:
Survey, Landscape, and Vision

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, Qing Wang

Abstract—Pre-trained large language models (LLMs) have recently emerged as a breakthrough technology in natural language
processing and artificial intelligence, with the ability to handle large-scale datasets and exhibit remarkable performance across a wide
range of tasks. Meanwhile, software testing is a crucial undertaking that serves as a cornerstone for ensuring the quality and reliability
of software products. As the scope and complexity of software systems continue to grow, the need for more effective software testing
techniques becomes increasingly urgent, and making it an area ripe for innovative approaches such as the use of LLMs. This paper
provides a comprehensive review of the utilization of LLMs in software testing. It analyzes 52 relevant studies that have used LLMs for
software testing, from both the software testing and LLMs perspectives. The paper presents a detailed discussion of the software testing
tasks for which LLMs are commonly used, among which test case preparation and program repair are the most representative ones. It
also analyzes the commonly used LLMs, the types of prompt engineering that are employed, as well as the accompanied techniques
with these LLMs. It also summarizes the key challenges and potential opportunities in this direction. This work can serve as a roadmap
for future research in this area, highlighting potential avenues for exploration, and identifying gaps in our current understanding of the
use of LLMs in software testing.

Index Terms—Pre-trained Large Language Model, Software Testing, LLM

✦

1 INTRODUCTION

Software testing is a crucial undertaking that serves as
a cornerstone for ensuring the quality and reliability of
software products. Without the rigorous process of software
testing, software enterprises would be reluctant to release
their products into the market, knowing the potential
consequences of delivering flawed software to end-users.
By conducting thorough and meticulous testing procedures,
software enterprises can minimize the occurrence of critical
software failures, usability issues, or security breaches
that could potentially lead to financial losses or jeopardize
user trust. Additionally, software testing helps to reduce
maintenance costs by identifying and resolving issues early
in the development lifecycle, preventing more significant
complications down the line.

The significance of software testing has garnered sub-
stantial attention within the research and industrial com-
munities. In the field of software engineering, it stands as
an immensely popular and vibrant research area. One can
observe the undeniable prominence of software testing by
simply examining the landscape of conferences and sym-
posiums focused on software engineering. Amongst these
events, topics related to software testing consistently domi-
nate the submission numbers and are frequently selected for
publication.
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While the field of software testing has gained significant
popularity, there still remain dozens of challenges that
have not been effectively addressed. For example, one
such challenge is automated unit test cases generation.
Although various approaches, including search-based [1],
[2], constraint-based [3] or random-based [4] techniques
to generate a suite of unit tests, the coverage and the
meaningfulness of the generated tests are still far from
satisfactory. Similarly, when it comes to mobile GUI testing,
existing studies with random-/rule-based methods [5], [6],
model-based methods [7], [8], and learning-based methods
[9] are unable to understand the semantic information of the
GUI page and often fall short in achieving comprehensive
coverage. Considering these limitations, numerous research
efforts are currently underway to explore innovative
techniques that can enhance the efficacy of software testing
tasks, among which large language models are the most
promising ones.

Large language models (LLMs) such as T5, GPT-3 have
revolutionized the field of natural language processing
(NLP) and artificial intelligence (AI). These models,
initially pre-trained on extensive corpora, have exhibited
remarkable performance across a wide range of NLP
tasks including question answering, machine translation,
and text generation. In recent years, there has been a
significant advancement in LLMs with the emergence of
models capable of handling even larger-scale datasets. This
expansion in model size has not only led to improved
performance but also opened up new possibilities for
applying LLMs as Artificial General Intelligence. Among
these advanced LLMs, models like ChatGPT1 and LLaMA2

1. https://openai.com/blog/chatgpt
2. https://ai.meta.com/blog/large-language-model-llama-meta-ai/
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boast billions of parameters. Such models hold tremendous
potential for tackling complex practical tasks in domains
like code generation and artistic creation. With their
expanded capacity and enhanced capabilities, LLMs have
become game-changers in NLP and AI, and are driving
advancements in other fields like coding, software testing.

Actually LLMs have been used for various coding
related tasks including code generation and code
recommendation [10], [11]. However, there have been
concerns about the correctness and reliability of the code
generated by LLMs, as some studies have shown that
the code generated by LLMs may not always be correct,
or may not meet the expected software requirements. By
comparison, when LLMs are used for software testing
tasks, such as generating test cases or validating the
correctness of software behavior, the impact of this problem
is relatively weaker. This is because the primary goal of
software testing is to identify issues or problems in the
software system, rather than to generate correct code or
meet specific software requirements. At worst, the only
consequence is that the corresponding defects are not
discovered. Furthermore, in some cases, the seemingly
incorrect outputs from LLMs may actually be beneficial
for testing corner cases in software, and can help uncover
defects. Taken in this sense, we think the LLMs are a natural
match with software testing.

This article presents a comprehensive review of the uti-
lization of LLMs in software testing. We collect 52 relevant
papers and conduct a thorough analysis from both software
testing and LLMs perspectives, as roughly summarized in
Figure 1.

From the viewpoints of software testing, our analysis in-
volves an examination of the specific software testing tasks
for which LLMs are employed. Results show that LLMs are
commonly used for test case preparation (including unit
test case generation, test oracle generation, and test input
generation), program debug and repair, while we do not
find the practices for applying LLMs in the tasks of early
testing life-cycle (such as test requirements, test plan, etc).

From the viewpoints of LLMs, our analysis includes the
commonly used LLMs in these studies, the types of prompt
engineering, input of the LLMs, as well as the accompanied
techniques with these LLMs. Results show that about one
third of the studies utilize the LLMs through pre-training
or fine-tuning schema, while the others employ the prompt
engineering to communicate with LLMs to steer its behav-
ior for desired outcomes. For prompt engineering, the zero-
shot learning and few-shot learning are most commonly
used, while other advances ones like chain-of-thought pro-
moting and self-consistency are rarely utilized. Results also
show that traditional testing techniques like differential test-
ing and mutation testing are usually accompanied with the
LLMs to help generate more diversified tests.

Furthermore, we summarize the key challenges and
potential opportunities in this direction. These encompass
leveraging LLMs for a wider array of software testing tasks
and stages, extending their applications to a broader range
of testing types and software categories, providing more
comprehensive benchmark datasets along with rigorous
experimental validations, incorporating advanced prompt

Fig. 1: Structure of the contents in this paper (the numbers
in bracket indicates the number of involved papers, and a
paper might involve zero or multiple items)

engineering techniques, and integrating LLMs with other
testing techniques, etc.

This paper makes the following contributions:
● We thoroughly analyze 52 relevant studies that used

LLMs for software testing, regarding publication
trends, distribution of publication venues, etc.

● We conduct a comprehensive analysis to understand
the distribution of software testing tasks with LLM, and
present a thorough discussion about how these tasks
are solved with LLM.

● We conduct a comprehensive analysis from the perspec-
tive of LLMs, and uncover the commonly-used LLMs,
the types of prompt engineering, input of the LLMs, as
well as the accompanied techniques with these LLMs.

● We highlight the challenges in existing studies and
present potential opportunities for further studies.

We believe that this work will be valuable to both re-
searchers and practitioners in the field of software engineer-
ing, as it provides a comprehensive overview of the current
state and future vision of using LLMs for software testing.
For researchers, this work can serve as a roadmap for future
research in this area, highlighting potential avenues for ex-
ploration and identifying gaps in our current understanding
of the use of LLMs in software testing. For practitioners, this
work can provide insights into the potential benefits and
limitations of using LLMs for software testing, as well as
practical guidance on how to effectively integrate them into
existing testing processes. By providing a detailed landscape
of the current state and future vision of using LLMs for
software testing, this work can help accelerate the adoption
of this technology in the software engineering community
and ultimately contribute to improving the quality and reli-
ability of software systems.
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2 BACKGROUND

2.1 Large Language Model (LLM)

Recently, pre-trained language models (PLMs) have been
proposed by pretraining Transformer-based models over
large-scale corpora, showing strong capabilities in solving
various natural language processing (NLP) tasks [12]–
[15]. Studies have shown that model scaling can lead
to improved model capacity, prompting researchers to
investigate the scaling effect through further parameter size
increases. Interestingly, when the parameter scale exceeds a
certain threshold, these larger language models demonstrate
not only significant performance improvements, but also
special abilities such as in-context learning, which are
absent in smaller models such as BERT.

To discriminate the language models in different
parameter scales, the research community has coined
the term large language models (LLM) for the PLMs of
significant size. LLMs typically refer to language models
that have hundreds of billions (or more) of parameters,
and are trained on massive text data such as GPT-3, PaLM,
Codex, and LLaMA. LLMs are built using the Transformer
architecture, which stacks multi-head attention layers
in a very deep neural network. Existing LLMs adopt
similar model architectures (Transformer) and pre-training
objectives (language modeling) as small language models,
but largely scale up the model size, pre-training data,
and total compute power. This enables LLMs to better
understand natural language and generate high-quality text
based on given context or prompts.

Note that, in existing literature, there is no formal con-
sensus on the minimum parameter scale for LLMs, since the
model capacity is also related to data size and total compute.
In a recent survey of LLMs [13], the authors focuses on
discussing the language models with a model size larger
than 10B. Under their criteria, the first LLM is T5 released
by Google in 2019, followed by GPT-3 released by OpenAI
in 2020, and there are more than thirty LLMs released be-
tween 2021 and 2023 indicating its popularity. In another
survey of unifying LLMs and knowledge graphs [16], the
authors categorize the LLMs into three types: encoder-only
(e.g., BERT), encoder-decoder (e.g., T5), and decoder-only
network architecture (e.g., GPT-3). In our review, we take
into account the categorization criteria of the two surveys
and only consider the encoder-decoder and decoder-only
network architecture of pre-training language models, since
they can both support generative tasks. We do not consider
the encoder-only network architecture because they cannot
handle generative tasks, were proposed relatively early (e.g.,
BERT in 2018), and there is almost no models using this
architecture after 2021. In other words, the LLMs discussed
in this paper not only include models with parameters of
over 10B (as mentioned in [13]), but also include other mod-
els that use the encoder-decoder and decoder-only network
architecture (as mentioned in [16]), such as BART with 140M
parameters and GPT-2 with parameter sizes ranging from
117M to 1.5B. This is also to potentially include more studies
to demonstrate the landscape of this topic.

2.2 Software Testing

Software testing is a crucial process in software develop-
ment that involves evaluating the quality of a software prod-
uct. The primary goal of software testing is to identify de-
fects or errors in the software system that could potentially
lead to incorrect or unexpected behavior. The whole life
cycle of software testing typically includes the following
tasks (demonstrated in Figure 4):

● Requirements Analysis: analyze the software require-
ments and identify the testing objectives, scope, and
criteria.

● Test Plan: develop a test plan that outlines the testing
strategy, test objectives, and schedule.

● Test Design and Review: develop and review the test
cases and test suites that align with the test plan and
the requirements of the software application.

● Test Case Preparation: the actual test cases are prepared
based on the designs created in previous stage.

● Test Execution: execute the tests that were designed in
the previous stage. The software system is executed
with the test cases and the results are recorded.

● Test Reporting: analyze the results of the tests and gen-
erate reports that summarize the testing process and
identify any defects or issues that were discovered.

● Bug Fixing and Regression Testing: defects or issues
identified during testing are reported to the develop-
ment team for fixing. Once the defects are fixed, regres-
sion testing is performed to ensure that the changes
have not introduced new defects or issues.

● Software Release: once the software system has passed
all of the testing stages and the defects have been fixed,
the software can be released to the customer or end
user.

The testing process is iterative and may involve multiple
cycles of the above stages, depending on the complexity of
the software system and the testing requirements.

During the testing phase, various types of tests may be
performed, including unit tests, integration tests, system
tests, and acceptance tests.

● Unit Testing involves testing individual units or com-
ponents of the software application to ensure that they
function correctly.

● Integration Testing involves testing different modules
or components of the software application together to
ensure that they work correctly as a system.

● System Testing involves testing the entire software sys-
tem as a whole, including all the integrated components
and external dependencies.

● Acceptance Testing involves testing the software appli-
cation to ensure that it meets the business requirements
and is ready for deployment.

In addition, there can be functional testing, performance
testing, unit testing, security testing, accessibility testing,
and etc, which explores various aspects of the software un-
der test [17].
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3 PAPER SELECTION AND REVIEW SCHEMA

3.1 Survey Scope
The scope of our paper is software testing with LLMs. We
apply the following inclusion criteria when collecting pa-
pers. If a paper satisfies any of the following criteria, we
will include it.
● The paper proposes or improves an approach, study, or

tool/framework that targets testing specific software or
systems with LLMs.

● The paper applies LLMs to software testing practice,
including all tasks within software testing lifecyle as
demonstrated in Section 2.2.

● The paper presents an empirical or experimental study
about utilizing LLMs to software testing practice.

● The paper involves specific testing techniques (e.g.,
fuzz testing) employing LLMs.

In addition, the following studies would be excluded
during study selection:
● The paper does not involve software testing tasks, e.g.,

code comment generation.
● The paper does not utilize LLMs, e.g., using recurrent

neural networks.
● The paper mentions LLMs only in future work or dis-

cussions rather than using LLMs in the approach.
● The paper utilizes language models with encoder-only

architecture, e.g., BERT, which can not directly be uti-
lized for generation tasks (as demonstrated in Section
2.1).

● The paper focuses on testing the performance of LLMs,
such as fairness, stability, security, etc. [18]–[20]

● The paper focuses on evaluating the performance of
LLM-enabled tool, e.g., evaluating the code quality of
code generation tool Copilot [21]–[23].

3.2 Paper Collection Methodology
To ensure that we collect papers from diverse research areas,
we conduct an extensive search using four popular scientific
databases: ACM digital library, IEEE Xplore digital library,
arXiv, and DBLP.

We search for papers whose titles contained keywords
related to software testing tasks and testing techniques in
the first three databases. In the case of DBLP, we use ad-
ditional keywords related to LLMs to filter out irrelevant
studies, as relying solely on testing-related keywords would
result in a large number of candidate studies. We use two
sets of keywords for DBLP because a significant portion of
the studies in this database can be found in the first three
databases, thus this fourth database serves as a supplemen-
tary source of paper collection.
● Keywords related with software testing: test |bug |issue
|defect |terms of testing tasks (e.g., debug, repair) |terms
of testing techniques (e.g., fuzz, mutation, metamor-
phic).

● Keywords related with LLMs: LLM |language model
|name of the LLM (e.g., ChatGPT). We use the LLMs in
[13] and [16] except those in our exclusion criteria.

To compensate for the potential omissions that may
result from automated searches, we also conduct manual
searches. Specifically, we manually review the titles and

abstracts of papers presented at major conferences in the
software engineering field to include additional possible
papers.

We conduct both the keywords search and the manual
search about the papers from Jan. 2019 to Apr. 2023. We
further conduct the second round of paper search to include
the papers from Apr. 2023 to Jun. 2023.

To further determine which papers are relevant to this
survey, we conduct a three-stage paper filtering. First, we
automatically filter the papers whose abstract include words
“model”. Second, we automatically filter the paper whose
content contains the name of the LLMs, using the LLMs
in [13], [16] except those in our exclusion criteria. Third,
we conduct manual inspection to check whether its satisfies
our inclusion criteria. The first filtering stage is mainly to
eliminate the papers which donot involve the neural mod-
els, and the second filtering stage is mainly to eliminate
papers that leverage machine learning, deep learning, etc.
In the final filtering stage, two authors read each paper to
carefully determine whether it should be included based on
the inclusion criteria and exclusion criteria, and any paper
with different decision will be handed over to a third author
to make the final decision.

In addition, we establish quality assessment criteria to
exclude low-quality studies as shown below. For each ques-
tion, the study’s quality is rated as “yes”, “partial” or “no”
which are assigned values of 1, 0.5, and 0, respectively. Pa-
pers with a total score of less than 8 will be excluded from
our study.
● Is there a clearly stated research goal related to software

testing?
● Is there a defined and repeatable technique?
● Is there any explicit contribution to software testing?
● Is there an explicit description about which LLMs are

utilized?
● Is there an explicit explanation about how the LLMs are

utilized?
● Is there a clear methodology for validating the tech-

nique?
● Are the subject projects selected for validation suitable

for the research goals?
● Are there control techniques or baselines to demon-

strate the effectiveness of the proposed technique?
● Are the evaluation metrics relevant (e.g., evaluate the

effectiveness of the proposed technique) to the research
objectives?

● Do the results presented in the study align with the
research objectives and are they presented in a clear
and relevant manner?

3.3 Collection Results
We retrieve a total of 14,623 papers from four databases
by keyword searching. After the first filtering stage, we ob-
tain 8,748 papers that may use the neural model. After the
second filtering stage, we obtain 922 papers that may use
the LLM. After the final filtering and quality assessment
stage, we collect a total of 52 papers involving the software
testing with LLMs. Table 1 shows the details of the collected
papers. Note that, there are two papers which are the exten-
sion of previous publications from the same authors. In the
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TABLE 1: Details of the collected papers

ID Topic Paper title Year Reference

1 Unit test generation Unit Test Case Generation with Transformers and Focal Context 2021 [24]
2 Unit test generation CodeT: Code Generation with Generated Tests 2022 [25]
3 Unit test generation Interactive Code Generation via Test Driven User Intent Formalization 2022 [26]
4 Unit test generation A3Test: Assertion Augmented Automated Test Case Generation 2023 [27]
5 Unit test generation Adaptive Test Generation Using a Large Language Model 2023 [28]
6 Unit test generation ChatUniTest: a ChatGPT based automated unit test generation tool 2023 [29]
7 Unit test generation CodaMOSA: Escaping Coverage Plateaus in Test Generation with Pre-trained Large Language Models 2023 [30]
8 Unit test generation Exploring the Effectiveness of Large Language Models in Generating Unit Tests 2023 [31]
9 Unit test generation No More Manual Tests? Evaluating and Improving ChatGPT for Unit Test Generation 2023 [32]

10 Oracle generation Generating accurate assert statements for unit test cases using pretrained transformers 2020 [33]
11 Oracle generation Learning Deep Semantics for Test Completion 2023 [34]
12 Oracle generation; Repair Retrieval-Based Prompt Selection for Code-Related Few-Shot Learning 2023 [35]
13 Oracle generation; Repair Using Transfer Learning for Code-Related Tasks 2023 [36] [37]
14 Test input generation Automated Conformance Testing for JavaScript Engines via Deep Compiler Fuzzing 2021 [38]
15 Test input generation Large Language Models are Pretty Good Zero Shot Video Game Bug Detectors 2022 [39]
16 Test input generation SLGPT: Using Transfer Learning to Directly Generate Simulink Model Files and Find Bugs in the Simulink Toolchain 2022 [40]
17 Test input generation Automating GUI-based Software Testing with GPT-3 2023 [41]
18 Test input generation Chatting with GPT 3 for Zero Shot Human Like Mobile Automated GUI Testing 2023 [42]
19 Test input generation Efficient Mutation Testing via Pre-Trained Language Models 2023 [43]
20 Test input generation Fill in the Blank: Context aware Automated Text Input Generation for Mobile GUI Testing 2023 [44]
21 Test input generation Large Language Models are Edge Case Fuzzers: Testing Deep Learning Libraries via FuzzGPT 2023 [45]
22 Test input generation Large Language Models are Zero Shot Fuzzers: Fuzzing Deep Learning Libraries via Large Language Models 2023 [46]
23 Test input generation TARGET: Traffic Rule based Test Generation for Autonomous Driving Systems 2023 [47]
24 Test input generation Variable Discovery with Large Language Models for Metamorphic Testing of Scientific Software 2023 [48] [49]
25 Bug analysis iTiger: An Automatic Issue Title Generation Tool 2022 [50]
26 Bug analysis Explaining Software Bugs Leveraging Code Structures in Neural Machine Translation 2023 [51]
27 Debug Detect-Localize-Repair: A Unified Framework for Learning to Debug with CodeT5 2022 [52]
28 Debug Large Language Models are Few shot Testers: Exploring LLM based General Bug Reproduction 2022 [53]
29 Debug Explainable Automated Debugging via Large Language Model-driven Scientific Debugging 2023 [54]
30 Debug Finding Failure Inducing Test Cases with ChatGPT 2023 [55]
31 Debug; Repair A Study on Prompt Design, Advantages and Limitations of ChatGPT for Deep Learning Program Repair 2023 [56]
32 Repair Examining Zero-Shot Vulnerability Repair with Large Language Models 2021 [43]
33 Repair Automated Repair of Programs from Large Language Models 2022 [57]
34 Repair Can OpenAI’s Codex Fix Bugs?: An evaluation on QuixBugs 2022 [58]
35 Repair Fix Bugs with Transformer through a Neural Symbolic Edit Grammar 2022 [59]
36 Repair Practical Program Repair in the Era of Large Pre-trained Language Models 2022 [60]
37 Repair Repairing Bugs in Python Assignments Using Large Language Models 2022 [61]
38 Repair Towards JavaScript Program Repair with Generative Pre-trained Transformer (GPT-2) 2022 [62]
39 Repair An Analysis of the Automatic Bug Fixing Performance of ChatGPT 2023 [63]
40 Repair CIRCLE: Continual Repair Across Programming Languages 2023 [64]
41 Repair Domain Knowledge Matters: Improving Prompts with Fix Templates for Repairing Python Type Errors 2023 [65]
42 Repair Fixing Hardware Security Bugs with Large Language Models 2023 [66]
43 Repair Framing Program Repair as Code Completion 2023 [67]
44 Repair How Effective are Neural Networks for Fixing Security Vulnerabilities 2023 [68]
45 Repair Impact of Code Language Models on Automated Program Repair 2023 [69]
46 Repair InferFix: End to End Program Repair with LLMs 2023 [70]
47 Repair Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT 2023 [71]
48 Repair Neural Program Repair with Program Dependence Analysis and Effective Filter Mechanism 2023 [72]
49 Repair Towards Generating Functionally Correct Code Edits from Natural Language Issue Descriptions 2023 [73]
50 Repair VulRepair: A T5-based Automated Software Vulnerability Repair 2023 [74]

Note that: we put [36] and [37], [48] and [49] together considering they are respectively the original paper and its extension by the same authors.

2020 2021 2022 2023  
Publication Year

0

10

20

30

40

50

60

70

# 
Pu

bl
ic

at
io

ns

1 3

13

33

Fig. 2: Trend in the number of papers with year

following analysis, we only include the extended paper. In
other words, the following analysis is based on 50 collected
studies.

3.4 General Overview of Collected Paper
Among the papers, 38% papers are published in software
engineering venues, among which 7 papers are from ICSE,

Fig. 3: Topics discussed in the collected papers

2 papers are from FSE, and 3 papers are from ISSTA. 4%
papers are published in artificial intelligence venues such as
EMNLP and ICLR, and 6% papers are published in program
analysis or security venues like PLDI and S&P. Besides,
52% of the papers have not yet published via peer-reviewed
venues (i.e., arXiv). This is understandable because this
field is emerging and many works are just completed and
in the process of submission. Although these papers did not
undergo peer review, we have a quality assessment process
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Fig. 4: Distribution of testing tasks with LLMs (aligned with software testing life cycle [75]–[77], the number in bracket
indicates the number of collected studies per task, and one paper might involve multiple tasks)

that eliminates papers with low quality, which potentially
ensures the quality of this survey.

Figure 2 demonstrates the trend of our collected papers
per year. We can see that as the years go by, the number
of papers in this field is growing almost exponentially. In
2020 and 2021, there were only 1 and 3 papers, respectively.
In 2022, there were 13 papers, and in the first half of 2023,
there were already 33 papers. It is conceivable that there
will be even more papers in the future, which indicates the
popularity and attention that this field is receiving.

To provide a general overview of these papers, Figure 3
shows the word cloud created by the abstracts of the col-
lected papers, from which we can generally observe the
involved topics in these collected papers.

4 ANALYSIS FROM SOFTWARE TESTING

This section conducts the analysis based on the viewpoints
of software testing, and will organize the collected studies
in terms of testing tasks. Figure 4 lists the distribution of
each involved testing tasks, aligned with the software test-
ing life cycle. We first provide some general overview of the
distribution, following by the further analysis for each task.
NOTE that: for each following subsection, the cumulative
total of subcategories may not always match the total num-
ber of papers since a paper might belong to more than one
subcategory.

We can see that LLMs have been effectively used in both
mid to late stages of the software testing lifecycle. In the test
case preparation phase, LLMs have been utilized for tasks
such as generating unit test cases, test oracle generation, test
input generation. These tasks are crucial in the mid-phase
of software testing to help catch issues and prevent further
development until issues are resolved. Furthermore, in later
phases such as the test report/bug reports, bug fix and re-
gression test phase, LLMs have been employed for tasks
such as bug analysis, debugging, and repair. These tasks are
critical towards the end of the testing phase when software
bugs need to be resolved to prepare for the product’s release.

4.1 Unit Test Case Generation
Unit test case generation involves writing unit test cases to
check individual units/components of the software inde-
pendently and ensure that they work correctly. For a method
under test (i.e., often called as the focal method), its corre-
sponding unit test consists of a test prefix and a test oracle.
In particular, the test prefix is typically a series of method
invocation statements or assignment statements, which aims

at driving the focal method to a testable state; and then the
test oracle serves as the specification to check whether the
current behavior of the focal method satisfies the expected
one, e.g., the test assertion.

To alleviate manual efforts in writing unit tests,
researchers have proposed various techniques to facilitate
automated unit test generation. Traditional unit test
generation techniques leverage search-based [1], [2],
constraint-based [3] or random-based strategies [4] to
generate a suite of unit tests with the main goal of
maximizing the coverage in the software under test.
Nevertheless, the coverage and the meaningfulness of the
generated tests are still far from satisfactory.

Since LLMs have demonstrated promising results in
tasks such as code generation, and given that both code
generation and unit test case generation involve generating
source code, recent research has extended the domain of
code generation to encompass unit test case generation.
Despite initial success, there are nuances that set unit
test case generation apart from general code generation,
signaling the need for more tailored approaches.

Early practices for fine-tuning LLMs. The early practices
mainly focus on how to pre-train or fine-tune LLMs with
domain-specific data, in order to enhance their effective-
ness on the unit test generation task. For example, [27] first
pre-trained the LLM with the focal method and asserted
statements to enable the LLM having a stronger founda-
tion knowledge of assertions, then fine-tuned the LLM for
the test case generation task where the objective is to learn
the relationship between the focal method and the corre-
sponding test case. [24] utilized a similar schema by pre-
training the LLM on a large unsupervised Java corpus, and
supervised fine-tuning a downstream translation task for
generating unit tests.

Later studies focus on designing effective prompts.
Subsequently, LLMs possess enhanced abilities, allowing
them to excel at targeted tasks without the pre-training
or fine-tuning. Therefore the later studies typically focus
on how to design the prompt, to make the LLM better at
understanding the context and nuances of this task. [29]
generated unit test cases by parsing the project, extracting
essential information, and creating an adaptive focal
context that includes a focal method and its dependencies
within the pre-defined maximum prompt token limit of
the LLM, and incorporate these context into a prompt to
query the LLM. [32] first performed an empirical study
to evaluate ChatGPT’s capability of unit test generation
with both a quantitative analysis and a user study in
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TABLE 2: Performance of unit test case generation

Dataset Correctness Coverage LLM Paper
5 Java projects from Defects4J 16.21% 5%-13% (line coverage) BART [24]
10 Jave projects 40% 89% (line coverage), 90% (branch coverage) ChatGPT [29]
CodeSearchNet 41% N/A ChatGPT [32]
HumanEval 78% 87% (line coverage), 92% (branch coverage) Codex [31]
SF110 2% 2% (line coverage), 1% (brach coverage) Codex [31]

Note that, [31] experiments with Codex, CodeGen, and ChatGPT, and the best performance was achieved by Codex.

terms of correctness, sufficiency, readability, and usability.
And results show that the generated tests still suffer from
correctness issues, including diverse compilation errors and
execution failures. They further proposed an approach that
leveraged the ChatGPT itself to improve the quality of its
generated tests with an initial test generator and an iterative
test refiner. Specifically, the iterative test refiner iteratively
fixed the compilation errors in the tests generated by the
initial test generator, which follows a validate-and-fix
paradigm to prompt the LLM based on the compilation
error messages and additional code context.

Incorporating LLM with search based software testing
for unit test generation. The aforementioned studies utilize
LLMs for the whole unit test case generation task, while [30]
focus on a different direction, i.e., first letting the traditional
search-based software testing techniques (e.g., Pynguin [78])
in generating unit test case until its coverage improvements
stall, then asking the LLM to provide the example test cases
for under-covered functions. These examples can help the
original test generation redirects its search to more useful
areas of the search space.

Performance of unit test case generation. Since the
aforementioned studies of unit test case generation are
based different datasets, one can hardly derive a fair
comparison and we present the details in Table 2 to let
the readers obtain a general view. We can see that in
SF110 benchmark, all three evaluated LLMs have quite
low performance, i.e., 2% coverage [31]. This SF110
dataset, which is an Evosuite (a search-based unit test case
generation technique) benchmark consisting of 111 open-
source Java projects retrieved from SourceForge, contains
23,886 classes, over 800,000 bytecode-level branches, and
6.6 million lines of code. The authors did not present
the detailed reasons for the low performance, and can be
further explored in future.

4.2 Test Oracle Generation

A test oracle is a source of information about whether the
output of a software system (or program or function or
method) is correct or not. Most the collected studies in this
category target at the test assertion generation, which is
inside a unit test case. Nevertheless, we opted to treat these
studies as separate sections to facilitate a more thorough
analysis.

Test assertion, which is to indicate the potential issues
in the tested code, is an important aspect that can distin-
guish the unit test cases from the regular code. This is why
some researches specifically focus on the generation of effec-
tive test assertion. Actually, before using LLMs, researchers
have proposed RNN-based approach which aims at learning
from thousands of unit test methods to generate meaningful

assert statements [79], yet only 17% of the generated as-
serts can exactly match with the ground truth asserts. Sub-
sequently, to improve the performance, several researchers
utilized the LLMs for this task.

[36], [37] pre-trained a T5 model on a dataset composed
of natural language English text and source code. Then, it
fine-tuned such a model by reusing datasets used in four
previous works that used deep learning techniques (such
as RNN as mentioned before) including test assertion gen-
eration and program repair, etc. Results showed that the
extract match rate of the generated test assertion is 57%. [33]
proposed a similar approach which separately pre-trained
the LLM with English corpus and code corpus, and then
fine-tuned it on the asserts dataset (with test methods, focal
methods, and asserts). This further improved the perfor-
mance to 62% of exact match rate. Besides the syntax-level
data as previous studies, [34] fine-tuned the LLMs with six
kinds of code semantics data, including the execution result
(e.g., types of the local variables) and execution context (e.g.,
the last called method in the test method), which enabled
LLMs to learn to understand the code execution informa-
tion. The exact match rate is 17% (note that this paper is
based on a different dataset with all other studies mentioned
under this topic).

The aforementioned studies utilized the pre-training and
fine-tuning schema when using LLMs, and with the increas-
ingly powerful capabilities of LLMs, they are able to per-
form well on specific tasks without these specialized pre-
training or fine-tuning datasets. Subsequently, [35] utilized
the prompt engineering for this task, and proposed a tech-
nique for prompt creation that automatically retrieves code
demonstrations similar to the task, based on embedding
or frequency analysis. They also present evaluations about
the few-shot learning with various numbers (e.g., zero-shot,
one-shot, or n-shot) and forms (e.g., random vs. systematic,
or with vs. without natural language descriptions) of the
prompts, to investigate its feasibility on test assertion gen-
eration. With only a few relevant code demonstrations, this
approach can achieve an accuracy of 76% for exact matches
in test assertion generation, which is the state-of-the-art per-
formance for this task.

4.3 Test Input Generation
This category covers the studies related to creating test input
for enabling the automation of test execution, and for our
collected studies, this category is mainly for system test-
ing. The generation of system-level test inputs for software
testing varies for different types of software. For example,
for mobile applications, the test input generation requires
providing a diverse range of text inputs or operation combi-
nations (e.g., click a button, long press a list), which is key to
test the application’s functionality and user interface; while
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for Deep Learning (DL) libraries, the test input is a program
which covers diversified DL APIs.

Moreover, different from the unit test case generation, for
these system-level testing tasks, the test assertions usually
cannot be obtained directly, so this type of work usually
requires cooperation with a specialized testing technology
to complete the entire testing task (e.g., differential testing);
or only considers those bugs with observable oracles (e.g.,
crash). In other words, these studies typically only involve
the creation of test inputs without a corresponding test ora-
cle; thereby they are usually paired with automated testing
techniques to help derive a test oracle which can be used to
evaluate the correctness of the software under test. We will
present more details about these collected studies.

Test input generation for DL libraries. The input for
testing DL libraries is DL programs, and the difficulty
for generating the diversified input DL programs is that
they need to satisfy both the input language (e.g., Python)
syntax/semantics and the API input/shape constraints for
tensor computations. Traditional techniques with API-level
fuzzing [80], [81] or model-level fuzzing [82], [83] suffer
from the following limitations: 1) lack of diverse API
sequence thus cannot reveal bugs caused by chained API
sequences; 2) cannot generate arbitrary code thus cannot
explore the huge search space that exists when using the DL
libraries. Since LLMs can include numerous code snippets
invoking DL library APIs in their training corpora, they
can implicitly learn both language syntax/semantics and
intricate API constraints for valid DL program generation.
Taken in this sense, [46] uses both generative and infilling
LLMs to generate and mutate valid/diverse input DL
programs for fuzzing DL libraries. In detail, it first uses a
generative LLM (CodeX) to generate a set of seed program
(i.e., code snippets that use the target DL APIs). Then it
replaces part of the seed program with masked tokens
using different mutation oprators, and leverages the ability
of infilling LLM (InCoder) to perform code infilling to
generate new code that replaces the masked tokens. And
their follow-up study [45] goes a step further to prime
LLMs to synthesize unusual programs for the fuzzing
DL libraries. It is built on the well-known hypothesis
that historical bug-triggering programs may include
rare/valuable code ingredients important for bug finding,
and shows improved bug detection performance.

Test input generation for mobile apps. For mobile app
testing, one difficulty is to generate the appropriate text in-
puts to proceed to the next page, which remains a prominent
obstacle for testing coverage. Considering the diversity and
semantic requirement of valid inputs (e.g., flight departure,
movie name), traditional techniques with heuristic-based or
constraint-based techniques [6], [84] are far from generating
the meaningful text input. [44] employs the LLM to intelli-
gently generate the semantic input text according to the GUI
context. In detail, it automatically extracts the component in-
formation related to the EditText and generates the prompt,
and then inputs the prompt into the LLM to generate the
input text.

Besides the text input, there are other forms of input for
mobile apps, i.e., operations like click a button, select a list.
To fully test an app, it is required to cover more GUI pages
and conduct more meaningful exploration traces through

the GUI operations, yet existing studies with random-/rule-
based methods [5], [6], model-based methods [7], [8], and
learning-based methods [9] are unable to understand the se-
mantic information of the GUI page thus could not conduct
the trace planning effectively. [42] formulates the test input
generation of mobile GUI testing problem as a Q&A task,
which asks LLM to chat with the mobile apps by passing
the GUI page information to LLM to elicit testing scripts
(i.e., GUI operation), and executing them to keep passing the
app feedback to LLM, iterating the whole process. Within
it, the approach extracts the static context of the GUI page
and the dynamic context of the iterative testing process,
designs prompts for inputting these information to LLM
which enables the LLM better understand the GUI page as
well as the whole testing process.

Test input generation for others. Findings bugs in a
commercial cyber-physical system (CPS) development tool
such as Simulink is even challenging. Given the complexity
of Simulink language, generating valid Simulink model files
for testing is an ambitious task for traditional machine learn-
ing or deep learning techniques. [40] employs a small set
of Simulink-specific training data to fine-tune the LLM for
generating Simulink models. Results show that it can create
Simulink models quite similar to the open-source models,
and can find a super-set of the bugs traditional fuzzing ap-
proaches found.

In addition, there are studies employing the LLMs for
test input generation to serve as the testing of JavaScript
engine, autonomous driving systems, and video game. For
example, [38] utilizes the LLM for generating the JavaScript
programs, and utilizes the well-structured ECMAScript
specifications to automatically generate test data along with
the test programs, and then applies differential testing to
expose bugs. [47] uses LLM to extract key information
related to the test scenario from a traffic rule, and represents
the extracted information in a test scenario schema, then
synthesizes the corresponding scenario scripts to construct
the test scenario.

4.4 Bug Analysis
This category involves analyzing identified software bugs
to facilitate the understanding of the bug. [51] proposes to
explain software bugs with LLM, which generates natural
language explanations for software bugs by learning from
a large corpus of bug-fix commits. [50] targets at automat-
ically generating the bug title from the descriptions of the
bug, which aims to help developers write issue titles and
facilitate the bug triaging and follow-up fixing process.

4.5 Debug
This category focuses on identifying and resolving software
errors to ensure that the code works as expected, which may
involve analyzing code, tracing execution, collecting error
information, and outputting information to find and fix
issues. For example, [52] proposes a unified Detect-Localize-
Repair framework based on the LLM for debugging, which
first determines whether a given code snippet is buggy
or not, then identifies the buggy lines, and translates the
buggy code to its fixed version. [56] conducts a study of the
deep learning program debugging ability, including fault
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detection, fault localization and program repair of LLM. [54]
proposes automated scientific debugging, a technique that
given buggy code and a bug-revealing test, prompts LLMs
to automatically generate hypotheses, uses debuggers to
actively interact with buggy code, and thus automatically
reaches conclusions prior to patch generation.

There are also studies focusing on a sub-phase of the
debugging process. For example, [53] proposes a framework
to harness the LLM to reproduce bugs, and suggest bug re-
producing test cases to the developer for facilitating debug.
[55] focuses on a similar aspect about finding the failure-
inducing test cases whose test input can trigger the soft-
ware’s fault. It synergistically combines LLM and differen-
tial testing to do that.

4.6 Program Repair

This category denotes the task to fix the identified software
bugs. The high frequency of repair related studies can be
attributed to the close relationship between this task and the
source code. With their advanced natural language process-
ing and understanding capabilities, LLM are well-equipped
to process and analyze source code, making them an ideal
tool to perform code-related tasks such as fixing bugs.

There have been template-based [85], heuristic-based
[86], and constraint-based [87], [88] automatic program
repair techniques. And with the development of deep
learning techniques in the past few years, there have
been several studies employing deep learning techniques
for program repair. They typically adapt deep learning
models to take a buggy software program as input and
generate a patched program. They would build a neural
network model from a training set, and learns the relations
between the buggy code and corresponding fixed code.
Nevertheless, these techniques still fail to fix a large portion
of bugs, and they typically have to generate hundreds to
thousands of candidate patches and take hours to validate
these patches to fix enough bugs. Furthermore, the deep
learning based program repair models need to be trained
with huge amount of labeled training data (typically
pairs of buggy and fixed code), which is time- and effort-
consuming to collect the high quality dataset. Subsequently,
with the popularity and demonstrated capability of the
LLMs, researchers begin to explore the LLMs for program
repair.

Patch single-line bugs. In the early era of program re-
pair, the focus is mainly on addressing defects related to
single-line code errors, which is relatively uncomplicated
and did not require the repair of complex program logic. [62]
proposes to fine-tune the LLM with JavaScript code snippets
to serve as the purpose for the JavaScript program repair.
[72] employs the program slicing to extract contextual in-
formation directly related to the given buggy statement as
repair ingredients from the corresponding program depen-
dence graph, which makes the fine-tuning more focus on
the buggy code. Since most real-world bugs would involve
multiple-lines of code, and later studies explore these more
complex situations (although some of them can also patch
the single-line bugs).

Patch multiple-lines bugs. The studies in this category
would input a buggy function to the LLM, and the goal is to

output the patched function, which might involve complex
semantic understanding, code hunk modification, as well
as program refactoring. Earlier studies typically employ the
fine-tuning strategy to enable the LLM better understand
the code semantics. [74] fine-tunes the LLM by employing
BPE tokenization to handle Out-Of-Vocabulary (OOV) is-
sues which makes the approach can generate new tokens
that never appear in a training function but are newly intro-
duced in the repair. The aforementioned studies (including
the ones in patching single-line bugs) would predict the
fixed programs directly, and [59] utilizes a different setup
which predicts the scripts that can fix the bugs when exe-
cuted with the delete and insert grammar. For example, it
predicts whether an original line of code should be deleted,
and what content should be inserted.

Nevertheless, fine-tuning may face limitations in terms
of its reliance on abundant high-quality labeled data, signif-
icant computational resources, and the possibility of over-
fitting. To approach the program repair problem more ef-
fectively, later studies focus on how to design the effective
prompt for program repair. Several studies empirically in-
vestigate the effectiveness of prompt variants of the latest
LLMs for program repair under different repair settings and
commonly-used benchmarks [56], [58], [60], [63], [68], [69],
which will be explored in depth later, while other stud-
ies focus on proposing new techniques. [67] takes advan-
tage of LLM to conduct the code completion in a buggy
line for patch generation, and elaborate on how to circum-
vent the open-ended nature of code generation to appropri-
ately fit the new code in the original program. [71] proposes
the conversation-driven program repair approach that in-
terleaves patch generation with instant feedback to perform
the repair in a conversational style. They first feed the LLM
with relevant test failure information to start with, and then
learns from both failures and successes of earlier patching
attempts of the same bug for more powerful repair. For
earlier patches that failed to pass all tests, they combine
the incorrect patches with their corresponding relevant test
failure information to construct a new prompt for the LLM
to generate the next patch, in order to avoid making the
same mistakes. For earlier patches that passed all the tests
(i.e., plausible patches), they further ask the LLM to gener-
ate alternative variations of the original plausible patches.
This can further build on and learn from earlier successes
to generate more plausible patches to increase the chance
of having correct patches. [61] proposes a similar approach
design by leveraging multimodal prompts (e.g., natural lan-
guage description, error message, input-output-based test
cases), iterative querying, test-case-based few-shot selection
to produce repairs.

Repair from natural language issue descriptions. The
aforementioned studies all consider the buggy code as the
input, and let the LLM conduct the automatic program re-
pair. [73] focuses on program repair from natural language
issue descriptions, i.e., generating the patch with the bug
and fix related information described in issue reports in
repositories.

Repair with static code analyzer. Most of the program
repair studies would suppose the bug has been detected,
while [70] proposes a program repair framework paired
with a static analyzer to first detect the bugs, and then fix it.
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TABLE 3: Performance of program repair

Dataset % Correct patches LLM Paper
Defects4J v1.2, Defects4J
v2.0, QuixBugs,
HumanEval-Java

22/40 Jave bugs (QuixBugs dataset, with InCoder-6B, correct
code infilling setting)

PLBART, CodeT5, CodeGen, In-
Coder (each with variant pa-
rameters, 10 LLMs in total)

[69]

QuixBugs 23/40 Python bugs, 14/40 Java bugs (complete function genera-
tion setting)

Codex-12B [58]

Defects4J v1.2, Defects4J
v2.0, QuixBugs, Many-
Bugs

39/40 Python bugs, 34/40 Java bugs (QuixBugs dataset, with
Codex-12B, correct code infilling setting); 37/40 Python bugs,
32/40 Java bugs (QuixBugs dataset, with Codex-12B, complete
function generation setting)

Codex, GPT-Neo, CodeT5, In-
Coder (each with variant pa-
rameters, 9 LLMs in total)

[60]

QuixBugs 31/40 Python bugs (completion function generation setting) ChatGPT-175B [63]
DL programs from Stack-
Overflow

16/72 Python bugs (complete function generation setting) ChatGPT-175B [56]

Note that, for studies with multiple datasets or LLMs, we only present the best performance or in the most commonly utilized dataset.

In detail, the static analyzer first detects an error (e.g., null
pointer dereference) and the context information provided
by the static analyzer will be sent into the LLM for querying
the patch for this specific error.

Empirical study about program repair. There are
several studies related with the empirical or experimental
evaluation of the various LLMs on program repair, and
we summarize the performance in Table 3. [60], [69]
conduct relatively comprehensive experimental evaluations
with various LLMs and on different automated program
repair benchmarks, while [56], [58], [63] focus on a
specific LLM and on one dataset, i.e., QuixBugs. There
are two commonly-used repair settings one can use LLMs
to generate patches: 1) complete function generation (i.e.,
generating the entire patch function), 2) correct code infilling
(i.e., filling in a chunk of code given the prefix and suffix),
and different studies might utilize different setting which is
explicitly marked in the table. The commonly-used datasets
are QuixBugs, Defects4J, etc. These datasets only involve
the fundamental functionalities such as sorting algorithm,
each program’s average number of lines ranging from
13 to 22, implementing one functionality, and involving
few dependencies. [56] conducts an empirical study on a
more complex dataset with DL programs collected from
StackOverflow. Every program contains about 46 lines
of code on average, implementing several functionalities
including data preprocessing, DL model construction,
model training, and evaluation. And the dataset involves
more than 6 dependencies for each program, including
TensorFlow, Keras, and Pytorch. Their results demonstrate
a much lower rate of correct patches than in other datasets,
which again reveals the potential difficulty of this task.

5 ANALYSIS FROM LLM
This section discusses the analysis based on the viewpoints
of LLM, specifically, it’s unfolded from the viewpoints of
utilized LLMs, types of promot engineering, input of the
LLMs, as well as the accompanied techniques when utilizing
LLM.

5.1 LLM Models

As shown in Figure 5, the most commonly utilized LLM is
Codex (a LLM based on GPT-3) which is trained on a mas-
sive code corpus containing examples from many program-
ming languages such as JavaScript, Python, C/C++, and

Codex, 19

30%

ChatGPT, 9

14%

CodeT5, 7

11%

CodeGen, 5

8% GPT-3, 5

8%
InCoder, 46%

T5, 3
5%

GPT-2, 3

5%

PLBART, 3

5%

BART, 3

5%

Others, 3

5%

Fig. 5: LLMs used in the collected papers

Java. Codex is released on Sep. 2021 by OpenAI and pow-
ers GitHub Copilot– an AI pair programmer that generates
whole code snippets, given a natural language description
as a prompt. Since a large portion of our collected studies
involve the source code (e.g., repair, unit test case genera-
tion), it is not surprising that researchers choose Codex as
the LLM in assisting them accomplishing the coding related
tasks.

ChatGPT, which is released on Nov. 2022, is the sec-
ond most commonly used LLM in our collected studies. It
is trained on a large corpus of natural language text data,
and primarily designed for natural language processing and
conversation. Since Codex is released more than one year
earlier than ChatGPT, it is most commonly utilized by the
studies earlier, and later studies tend to employ ChatGPT
to investigate its feasibility in various software testing tasks
and tackle the challenges of generating human-like text re-
sponses. In software testing domain, we have not observed
there are studies employing the newly developed GPT-4,
which is demonstrated to be more powerful in various tasks.
This maybe because it is lunched on Mar. 2023, which is just
a few months earlier before we conduct the paper collec-
tion. And we believe there would be more attempts about
employing GPT-4 for software testing tasks, especially these
related with multimodal such as UI screenshots.
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Fig. 6: Distribution about how LLM is used (Note that, a study can involve multiple types of prompt engineering)

The third-ranked LLM is CodeT5, which is an open
sourced LLM developed by salesforce3. Thanks to its open
source, researchers can easily conduct the pre-training and
fine-tuning with domain specific data to achieve better
performance. Similarly CodeGen is also open sourced and
ranked relatively higher. Besides, for CodeT5 and CodeGen,
there are more than half of the related studies involve the
empirical evaluations (which employ multiple LLMs), e.g.,
program repair [68], [69], unit test case generation [31].

There are also five studies utilizing GPT-3, which is also
widely popular in the general domain, for software testing.
As GPT-3 can provide good performance in general natural
language understanding, it is mainly used for some general
tasks, such as the input generation for automatic mobile
application testing [42], [44], and the traffic rule parsing in
autonomous driving tests [47].

5.2 Types of Prompt Engineering

As shown in Figure 6, among our collected studies, 21
studies utilize the LLMs through pre-training or fine-
tuning schema, while 33 studies employ the prompt
engineering to communicate with LLMs to steer its
behavior for desired outcomes without updating the model
weights. When using the early LLMs, their performances
might not be as impressive, so researchers often use
pre-training or fine-tuning techniques to adjust the models
for specific domains and tasks in order to improve their
performance. Then with the upgrading of LLM technology,
especially with the introduction of GPT-3 and later
LLMs, the knowledge contained within the models and
their understanding/inference capability has increased
significantly. Therefore, researchers will typically rely on
prompt engineering to consider how to design appropriate
prompts to stimulate the model’s knowledge.

Among the 33 studies with prompt engineering, 27
studies involve zero-shot learning, and 9 studies involve
the few-shot learning (a study may involve multiple types).
There are also respectively 3 and 1 studies involving
chain-of-though and self-consistency.

Zero-shot learning is to simply feed the task text to the
model and ask for results. Many of the collected studies
employ the Codex, CodeT5, and CodeGen (as shown in Sec-
tion 5.1), which is already trained on source code. Hence,

3. https://blog.salesforceairesearch.com/codet5/

for the tasks dealing with source code like unit test case
generation and program repair as demonstrated in previous
sections, directly query the LLM with prompts is the com-
mon practice. There are generally two types of manners of
zero-shot learning, i.e., with and without instructions. For
example, [29] would provide the LLMs with the instruc-
tions as “please help me generate a JUnit test for a specific
Java method ...” to facilitate the unit test case generation.
In contrast, [31] only provides the code header of the unit
test case (e.g., “class ${className}${suffix}Test {”), and the
LLMs would carry out the unit test case generation automat-
ically. Generally speaking, prompts with clear instructions
will yield more accurate results, while prompts without in-
structions are typically suitable for very specific situations.

Few-shot learning presents a set of high-quality demon-
strations, each consisting of both input and desired out-
put, on the target task. As the model first sees the exam-
ples, it can better understand human intention and criteria
for what kinds of answers are wanted, which is especially
important for the tasks that is not so straightforward or
intuitive to the LLM. For example, when conducting the
automatic test generation from general bug reports, [53] pro-
vides examples of bug reports (questions) and the corre-
sponding bug reproducing tests (answers) to the LLM, and
their results show that two examples can achieve the highest
performance than no examples or other number of exam-
ples. Another example test assertion generation, [35] pro-
vides demonstrations of the focal method, the test method
containing an <AssertPlaceholder>, and the expected asser-
tion, which enables the LLMs better understand the task.

Chain-of-thought (CoT) prompting generates a
sequence of short sentences to describe reasoning logics
step by step (also known as reasoning chains or rationales),
to eventually lead to the final answer. For example, for
program repair from the natural language issue descriptions
[73], given the buggy code and issue report, the authors first
ask the LLM to localize the bug, then they ask to explain
why the localized lines are buggy, finally they ask to fix the
bug. Another example is for generating unusual programs
for fuzzing deep learning libraries, [45] first generates a
possible “bug” (bug description) before generating the
actual “bug-triggering” code snippet that invokes the target
API. The predicted bug description provides additional
hint to the LLM, indicating that the generated code should
try to cover specific potential buggy behavior.
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Fig. 7: Input of LLM

Self-consistency involves evaluating the coherence and
consistency of the LLM’s responses on the same input in
different contexts. There is one study with this prompt
type, and it is about debug. [54] employs a hypothesize-
observe-conclude loop, which first generates a hypothesis
about what the bug is and construct an experiment to
verify, using an LLM, then decide whether the hypothesis is
correct based on the experiment result (with a debugger or
code execution) using an LLM, after that, depending on the
conclusion, it either starts with a new hypothesis or opts to
terminate the debugging process and generate a fix.

We also want to mention that there are eight studies
apply the iterative prompt design when using zero-shot or
few-shot learning, in which the approach continuously re-
fines the prompts with the running information of the test-
ing task, e.g., the test failure information. For example, for
program repair, [71] interleaves patch generation with test
validation feedback to prompt future generation in an it-
erative manner. In detail, they incorporate various infor-
mation from a failing test including its name, the relevant
code line(s) triggering the test failure, and the error message
produced in the next round of prompt which can help the
model understand the failure reason and provide guidance
towards generating the correct fix. Another example is for
mobile GUI testing, [42] iteratively query the LLM about the
operation (e.g., click a button, enter a text) to be conducted
in the mobile app, and at each iteration, they would provide
the LLM with current context information like which GUI
pages and widgets have just explored.

5.3 Input of LLM
We also find that different testing tasks or software under
test might involve diversified input when querying the
LLM, as demonstrated in Figure 7.

The most commonly utilized input is the source code,
since a large portion of collected studies relate with pro-
gram repair or unit test case generation whose input are
source code. For unit test case generation, typical code re-
lated information would be (i) the complete focal method,
including the signature and body; (ii) the name of the focal
class (i.e., the class that the focal method belongs to); (iii)
the field in the focal class; and (iv) the signatures of all

methods defined in the focal class [24], [32]. For program
repair, there can be different setups and involves different
inputs, including (i) inputting a buggy function with the
goal to output the patched function, (ii) inputting the buggy
location with the goal to generate the correct replacement
code (can be a single line change) given the prefix and suffix
of the buggy function [60]. Besides, there can be variations
for the buggy location input, i.e., (i) not contain the buggy
lines (but the bug location is still known), (ii) give the buggy
lines as lines of comments.

There are also five studies taking the bug description as
input for the LLM. For example, [53] takes the bug descrip-
tion as input when querying LLM and let the LLM generate
the bug reproducing test cases, and [73] inputs the natural
language descriptions of bugs to the LLM, and generate the
correct code fixes.

There are four studies which would provide the interme-
diate error information, e.g., test failure information, to the
LLM, and would conduct the iterative prompt (as described
in Section 5.2) to enrich the context provided to the LLM.
These studies are related to the unit test case generation
and program repair, since in these scenarios, the running
information can be acquired easily.

When testing mobile apps, since the utilized LLM could
not understand the image of the GUI page, the researches
would provide the LLM with the view hierarchy file which
represents the details of the GUI page. Nevertheless, with
the emerging of GPT-4 which is a multimodal model and
accepts both image and text inputs for model input, the GUI
screenshots might be directly utilized for LLM’s input.

5.4 Incorporating X with LLM

There are divided opinions on whether LM has reached an
all-powerful status that requires no other techniques. As
shown in Figure 8, among our collected studies, 28 of them
utilize LLMs to address the entire testing task, while 22 stud-
ies incorporate additional techniques. These techniques in-
clude mutation testing, differential testing, syntactic check-
ing, program analysis, statistical analysis, as well as natural
language processing and formal methods.

The reason why researchers still choose to combine
LLMs with other techniques might be because, despite
exhibiting enormous potential in various tasks, LLM still
possess limitations such as comprehending code semantics
and handling complex program structures. Therefore,
combining LLMs with other techniques optimizes their
strengths and weaknesses to achieve better outcomes in
specific scenarios. In addition, it is important to note that
while LLMs are capable of generating correct code, they
may not necessarily produce sufficient test cases to check
for edge cases or rare scenarios. This is where mutation
and other testing techniques come into play, as they allow
for the generation of more diverse and complex code that
can better simulate real-world scenarios. Taken in this
sense, a testing approach can incorporate a combination
of different techniques, including both LLMs and other
testing strategies, to ensure comprehensive coverage and
effectiveness.

LLM + program analysis. When utilizing LLMs to
accomplish tasks such as generating unit test cases and



13

Fig. 8: Distribution about LLM + X (Note that, a study can involve multiple types LLM + X schema)

repairing software code, it is important to consider that
software code inherently possesses structural information,
which may not be fully understood by LLMs. Hence,
researchers often utilize program analysis techniques,
including code abstract syntax trees (ASTs) [51], to
represent the structure of code more effectively and increase
the LLM’s ability to comprehend the code accurately.
Researchers also perform the structure-based subsetting of
code lines to narrow the focus for LLM [61], or extracts
additional code context from other code files [32], to enable
the models to focus on the most task-relevant information
in the codebase and lead to more accurate predictions.

LLM + statistic analysis. As LLMs can often generate a
multitude of outputs, manually sifting through and identi-
fying the correct output can be overwhelmingly laborious.
As such, researchers have turned to statistical analysis tech-
niques like ranking and clustering [26], [34], [53], [60], [72]
to efficiently filter through LLM’s outputs and ultimately
obtain more accurate results.

LLM + differential testing. Differential testing is well-
suited to find semantic or logic bugs that do not exhibit ex-
plicit erroneous behaviors like crashes or assertion failures.
In this category of our collected studies, the LLM is mainly
response for generating the valid and diversified inputs,
while the differential testing helps to determine whether
there is a triggered bug based on the software’s output. For
example, [38] first uses LLM to produce random JavaScript
programs, and leverages the language specification docu-
ment to generate test data, then conduct the differential test-
ing on JavaScript engines as JavaScriptCore, ChakraCore,
SpiderMonkey, QuickJS, etc. [45], [46] design a similar ap-
proach to let the LLM generate the test input and then con-
duct the differential testing for fuzzing DL libraries. [55]
employs the LLM in finding the failure-inducing test cases.
In detail, given a program under test, they first request the
LLM to infer the intention of the program, then request the
LLM to generate programs that have the same intention,
which are alternative implementations of the program, and
are likely free of the program’s bug. Then they performs
the differential testing with the program under test and the
generated programs to find the failure-inducing test cases.

LLM + mutation testing. It is mainly targeting at gen-
erating more diversified test inputs. For example, [46] first
uses LLM to generate the seed programs (e.g., code snippets

using a target DL API) for fuzzing deep learning libraries.
To enrich the pool of these test programs, they replace parts
of the seed program with masked tokens using mutation
operators (e.g., replaces the API call arguments with the
span token) to produce masked inputs, and again utilize
the LLMs to perform code infilling to generate new code
that replaces the masked tokens.

LLM + syntactic repair. Although LLMs have shown
remarkable performance in various natural language pro-
cessing tasks, the generated code from these models can
sometimes syntactically incorrect, leading to potential errors
and reduced usability. Therefore, researchers have proposed
to leverage syntax checking to identify and correct errors in
the generated code. For example, in [27] for unit test case
generation, the authors additionally introduce a verification
method to check and repair the naming consistency (i.e.,
revising the test method name to be consistent with the focal
method name) and the test signatures (i.e., adding missing
keywords like public, void, or @test annotations). Another
example is [29] which also validates the generated unit test
case and employs rule-based repair to fix syntactic and sim-
ple compile errors.

Besides, interpreting LLMs’ predictions and outputs re-
main challenging, thus combining various techniques like
the natural language processing can help to post-process
LLM’s outcome and filtering unsatisfied results.

6 CHALLENGES AND OPPORTUNITIES

Based on the above analysis from the viewpoints of soft-
ware testing and LLM, we summarize the challenges and
opportunities when conducting software testing with LLM.
These include utilizing LLMs for a more diverse set of soft-
ware testing tasks and phases, expanding their usage to a
wider variety of testing types and software, supplying more
comprehensive benchmark datasets together with thorough
experimental evaluations, integrating advanced prompt en-
gineering, and combining LLMs with relevant existing tech-
niques, etc.

6.1 Extending to More Tasks and More Phases
Utilizing LLMs for tasks in early stage of testing. As shown
in Figure 4, LLMs have not been used in the early stage of
testing, e.g., test requirements, test planning. There might



14

be two main reasons behind that. The first is the subjec-
tivity in early-stage testing tasks. Many tasks in the early
stages of testing, such as requirements gathering, test plan
creation, and design reviews, may involve subjective assess-
ments that require significant input from human experts.
This could make it less suitable for LLMs that rely heavily
on data-driven approaches. The second might be the lack of
open-sourced data in the early stages. Unlike in later stages
of testing, there may be limited data available online during
early stage activities. This could mean that LLMs may not
have seen much of this type of data, and therefore may not
perform well on these tasks.

Nevertheless, challenges and opportunities always
coexist. At the early stages, a crucial task is to automatically
generate test requirements based on software requirement
specifications and/or user manuals. This task is akin
to machine translation, where LLMs have already
demonstrated impressive performance [89]. However,
unlike machine translation, which involves relatively clear
semantic mapping, generating test requirements requires
significant domain knowledge and may involve integrating
information about the operation of the software being
tested. It is also essential to consider the coverage of the
generated test requirements for the software under test.

Exploring LLMs for tasks that popularly studied with
machine/deep learning techniques. Despite its success in
task related to test case prepartion and program repair,
there are testing tasks which have been popularly studied
with traditional techniques or machine/deep learning
techniques, e.g., test prioritization [90], regression testing
[91], bug triage [92], yet have not been touched by the
LLM. For test prioritization and regression testing, the
common practice with machine/deep learning techniques
would analyze the code and its dependencies and prioritize
the execution order of test cases based on their impact
or likelihood of detecting faults. With the LLM, these
can be conducted more accurately. In addition, LLMs can
assist in analyzing and triaging bug reports by leveraging
their comprehension and inference abilities. They can
identify duplicates, classify bugs based on severity or
priority, extract relevant information, and suggest potential
resolutions or workarounds.

Exploring LLMs for integration testing and acceptance
testing. We further analyze the distribution of testing phases
for the collected studies. As shown in Figure 9, we can ob-
serve that LLMs are most commonly used in unit testing,
followed by system testing. However, there is still no re-
search on the use of LLMs in integration testing and accep-
tance testing.

For integration testing, it involves testing the interfaces
between different software modules. In some software or-
ganizations, the integration testing might be merged with
unit testing, which can be a possible reason why LLM is
rarely utilized in integration testing. Another reason might
be that the size and complexity of the input data in this
circumstance may exceed the capacity of the LLM to process
and analyze (e.g., the source code of all involved software
modules), which can lead to errors or unreliable results.

For tackle this, a potential reference can be found in Sec-
tion 4.1, where [29] designs a method to organize the nec-
essary information into the pre-defined maximum prompt
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Fig. 9: Distribution of testing phases (note that we omit the
studies which donot explicitly specify the testing phases,
e.g., program repair)

token limit of the LLM. Furthermore, integration testing re-
quires diversified data to be generated to sufficiently test
the interface among multiple modules. As demonstrated in
Section 4.3, previous work has demonstrated the LLM’s ca-
pability in generating diversified test input for system test-
ing, in conjunction with mutation testing techniques [38],
[46]. And these can provide the insights about generating
the diversified interface data for integration testing.

For acceptance testing, it is usually conducted by busi-
ness analysts or end-users to validate the system’s func-
tionality and usability, which require more non-technical
language and domain-specific knowledge, thus making it
challenging to apply LLM effectively. Since acceptance test-
ing involves humans, it is well-suited for the use of human-
in-the-loop schema with LLMs. This has been studied in
traditional machine learning [93], but has not yet been ex-
plored with LLMs. Specifically, the LLMs can be responsible
for automatically generating test cases, evaluating test cov-
erage, etc, while human testers are responsible for checking
the program’s behavior and verifying test oracle.

6.2 Serving Other Types of Testing and Software

Employing LLMs for non-functional testing. In our collected
studies, LLMs are primarily used for functional testing, with
only few applications in security testing, and no practice in
performance testing, usability testing or others.

One possible reason for the prevalence of LLM-based
solutions in functional testing is that they are able to convert
functional testing problems into code generation or natural
language generation problems, which LLMs are particularly
adept at solving. For our collected studies related with se-
curity testing, all of them involve the vulnerability detection
and repair in the source code, rather than the security of the
whole software system. This also attributes to the capability
of LLM in understanding and processing the source code.

On the other hand, performance testing and usability
testing may require more specialized models that are de-
signed to detect and analyze specific types of data, handle
complex statistical analyses, or determine the buggy criteria.
Moreover, there have been dozens of performance testing
tools (e.g., LoadRunner) which can generate a workload that
simulates real-world usage scenarios and achieve relative
satisfactory performance.

The potential opportunities might let the LLM integrates
the performance testing tools and acts like the LangChain
[94], for better simulating different types of workloads based
on real user behavior. Furthermore, the LLMs can identify
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the parameter combinations and values that have the high-
est potential to trigger performance problems. It is essen-
tially a way to rank and prioritize different parameter set-
tings based on their impact on performance and improve
the efficiency of performance testing.

Employing LLMs for other types of software. We also
analyze what types of software have been explored in the
collected studies. Results show that the following types of
software are explored, as shown in Figure 10. Note that,
since a large portion of studies are focused on the unit test-
ing or program repair, they are conducted on publicly avail-
able datasets and do not involve specific software types.
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Fig. 10: Distribution of software under test

From the analysis in Section 4.3, the LLM can generate
not only the source code for testing DL libraries, but also
the textual input for testing mobile apps, even the models
for testing CPS. Overall, the LLM provides a flexible and
powerful framework for generating test inputs for a wide
range of applications, including testing DL libraries, mobile
apps, and CPS. Its versatility would makes it useful for test-
ing the software in other domains.

From one point of view, some propose techniques can
be applicable to other types of software. For example, in the
paper proposed for testing deep learning libraries [45], since
it proposes techniques for generating the diversified, com-
plicated and human-like DL programs, the authors state that
the approach can be easily extended to test software sys-
tems from other application domains, e.g., compilers, inter-
preters, database systems, SMT solvers, and other popular
libraries. And we also notice there are exploration about us-
ing LLM for database testing in a technical blog [95], which
can generate an equivalent SQL based on the Ternary Logic
Partitioning (TLP) principle to help derive the test oracle.

From other point of view, other types of software can
also benefit from the capabilities of LLMs. For example, for
Web applications, the LLMs can generate test inputs such
as HTTP requests, form inputs, and data payloads to test
the functionality, security, and performance of web appli-
cations. For network protocols, the LLMs can generate net-
work traffic and protocol messages to test the robustness
of network protocols, which can include testing communi-
cation between different network components, handling of
error and edge cases, and adherence to protocol specifica-
tions. For IoT devices, the LLMs can generate test inputs
and commands to test device communication, sensor data
processing, firmware updates, and integration with other
systems.

6.3 More Solid Benchmarks and Rigorous Evaluations

We find the following limitations which hinders the rigor-
ous evaluations and thorough comparison of the proposed
techniques. These limitations highlight the need for more
solid benchmarks and rigorous evaluations.

The first is the data leakage issue, i.e., the LLMs may
have seen these benchmarks in their pre-training data.
[69] checks the CodeSearchNet and BigQuery, which are
the datasources of common LLMs, the results show that
four repositories used by the Defect4J benchmark are also
in CodeSearchNet, and the whole Defects4J repository
is included by BigQuery. Therefore, it is very likely that
existing program repair benchmarks are seen by the LLMs
during pre-training. This data leakage issue has also
been investigated in machine learning related studies. For
example [96] focus on the data leakage in issue tracking
data, and results show that information leaked from the
“future” makes prediction models misleadingly optimistic.
This reminds us that the performance of LLMs on software
testing tasks may not be as good as reported in previous
researches. It also suggests that we need more specialized
datasets that are not seen by LLMs to serve as benchmarks.
One way is to collecting it from specialized sources, e.g.,
user-generated content from niche online communities.

The second is the limited number of benchmarks. For
unit test case generation, there is even no widely recog-
nized benchmarks, and different studies would utilize dif-
ferent datasets for performance evaluation, as demonstrated
in Table 2. For program repair, there are only two well-
known and commonly-used benchmarks, i.e., Defect4J and
QuixBugs, as demonstrated in Table 3. Furthermore, these
datasets are not specially designed for testing the LLMs. For
example, as reported in [60], 39 out of 40 Python bugs in
QuixBugs dataset can be fixed by Codex, yet in real-world
practice, the successful fix rate can be nowhere near as high.
This motivates to build more specialized and diversified
benchmark as mentioned in the first limitation.

The third is the performance variation across datasets.
This is not only the problem for LLMs, but also for tra-
ditional machine learning and deep learning models. For
example for unit test case generation, as shown in Table 2,
with the same technique [31], on HumanEval dataset it can
generate 78% correct unit test cases, and the line coverage is
87%, yet on SF110 dataset, both the correctness of generated
tests and the line coverage is merely 2%. The performance
variation among different datasets indicates the fragile of
current unit test case generation techniques. This perfor-
mance variation is also frequently observed in traditional
machine learning tasks, e.g., in defect prediction [97], [98].
Typically solution evolves more reliable benchmark and ex-
tension comparison as mentioned in the first and second
limitations.

The fourth is the performance inconsistency under the
same setting. For example for program repair, even based
on the same dataset, with the same LLM, and use the same
repair setup, the results report in different studies might dif-
fer. For example, as shown in Table 3, on QuixBugs Python
dataset, with Codex (12B), for the completion function gen-
eration setting, the correctly repaired bugs are respectively



16

23 [58] and 37 [60]. We assume there might be other imper-
ceptible differences in these two studies. For instance, they
might employ different prompt expression when querying
the LLM, which results in performance variation, since ex-
isting studies have also reveal that a slight modification in
the prompts can result in dramatic performance changes.
This phenomenon is not frequently observed in traditional
machine learning tasks, but it is worth noting in the con-
text of LLMs due to the unique nature of prompts. More
detailed description of the proposed approach and experi-
mental setup is encouraged in future work to facilitate the
follow-up comparison.

6.4 Boosting LLM Performance
Exploring advanced prompt engineering. There are a total
of 11 commonly used prompt engineering techniques as list
in a pupluar prompt engineering guide [99], as shown in
Figure 11. Currently, in our collected studies, only the first
four techniques are being utilized. The more advanced tech-
niques have not been employed yet, and can be explored in
the future for prompt design.
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Fig. 11: List of advanced prompt engineering practices and
those utilized in the collected papers

For instance, graph prompting involves the rep-
resentation of information using graphs or visual
structures to facilitate understanding and problem-solving.
Graph prompting can be a natural match with software
engineering, consider it involves various dependencies,
control flow, data flow, state transitions, or other relevant
graph structure. Graph prompting can be beneficial in
analyzing these structural information, and enabling the
LLMs to comprehend the software under test effectively.
For instance, testers can use graph prompts to visualize
test coverage, identify untested areas or paths, and ensure
adequate test execution.

Multimodal chain of thought prompting involves using
diverse sensory and cognitive cues to stimulate thinking and
creativity in LLMs. By providing images (e.g., GUI screen-
shots) or audio recordings related to the software under
test can help the LLM better understand the software’s con-
text and potential issues. Besides, try to prompt the LLM to
imagine itself in different roles, such as a developer, user, or

quality assurance specialist. This perspective-shifting exer-
cise enables the LLM to approach software testing from mul-
tiple viewpoints and uncover different aspects that might
require attention or investigation.

LLMs with relevant existing techniques. There is cur-
rently no clear consensus on the extent to which LLMs can
solve software testing problems. From the analysis in Sec-
tion 5.4, we have seen some promising results from studies
that have combined LLMs with traditional software testing
techniques. This implies the LLMs are not the sole silver bul-
let for software testing. Since there are already many mature
software testing techniques and tools, while the capabilities
of LLMs are not yet outstanding, therefore it is necessary to
explore other better ways to combine LLMs with traditional
testing techniques and tools for better software testing.

From the collected studies, the LLMs have successfully
utilized together with differential testing and mutation test-
ing as shown in Figure 8. More explorations are encouraged
in terms of combining LLMs with other testing techniques.
For instance, metamorphic testing involves generating test
cases based on the expected relationship between inputs
and outputs, rather than on specific input-output pairs, to
determine whether the software system behaves correctly
when the input changes in a predictable way. LLMs can
be used to recommend the potential metamorphic relations,
which can help people divergent thinking. Following that,
LLMs can be used to generate test cases automatically based
on the metamorphic relations that have been defined, which
can covers a variety of inputs. They can also be used to aug-
ment existing test suites with additional test cases generated
based on metamorphic relations, thus improve the diversity
of the test suite and increase the chances of detecting bugs.

Another example is model-based testing. We have
mentioned that the LLMs have successfully been utilized in
generating the Simulink model files and find bugs in the
Simulink toolchain [40]. And LLMs might be used to learn
the model of the software system by analyzing natural
language descriptions of the system’s behavior. Specifically,
LLMs can be used to analyze the system documentation,
user manuals, or other sources of information to learn
about the system’s behavior, so as to improve the accuracy
of the model for testing. In addition, LLMs can be used
to help evolve the model of the software system as the
system changes or evolves, e.g., analyze the natural
language descriptions of system changes or bug reports to
automatically update the model or generate new test cases.

The LLMs can be utilized through the LLM in the loop
manner, which invokes the LLM when it is needed. Be-
sides, since there are many mature software testing tools,
and one can let the LLMs integrate these tools and acts like
the LangChain for better explore the potential of these tools.

Fine-tuning open-source LLMs with software-specific
data. As we mentioned in Section 5.2, in the early days of
using LLMs, pre-training and fine-tuning are commonly-
used practice, considering the model parameters are
relatively few resulting in weaker model capabilities (e.g.,
T5). As time progressed, the number of model parameters
increased significantly which leading to the emergence
of models with greater capabilities (e.g., chatGPT). And
in recent studies, prompt engineering has become a
common approach. However, due to concerns regarding



17

data privacy, when considering real-world practice, most
software organizations tend to avoid using commercial
LLMs and would prefer to adopt open-source ones instead.
In such cases, using the software-specific data within the
organization for model fine-tuning can further improve the
performance.

Building high-quality datasets for fine-tuning is crucial,
and existing research has shown that high-quality training
data can significantly improve the performance of tasks such
as code search [100]. However, manually constructing such
datasets can be time-consuming and labor-intensive. Mean-
while, in the past few years, researchers have explored auto-
mated techniques to extract the key information (e.g., issue
and solution) from Stack Overflow and Gitter chatrooms
[101]. Since these platforms provide a wealth of information
on programming languages, frameworks, libraries, as well
as common coding patterns and practices, automatically ex-
tracting the targeted information can serve as an important
source for the fine-tuning dataset.

In addition, exploring the methodology about how to
better fine-tune the LLMs with software-specific data is
worth considering because software-specific data differs
from natural language data in that it contains more
structural information, such as data flow and control flow.
Previous research on code representations has considered
employing the data flow which is a semantic-level structure
of code that depicts the relation of “whether-value-comes-
from” between variables, and demonstrates its advantages
than considering the code without structure [102]. Besides,
researches also utilize the abstract syntax tree and control
flow [103], [104] for code representation and achieve good
performance. These can provide valuable insights for
fine-tuning LLMs with software-specific data.

7 CONCLUSION

This paper provides a comprehensive review of the use of
LLMs in software testing. We have analyzed relevant studies
that have utilized LLMs in software testing from both the
software testing and LLMs perspectives. This paper also
highlights the challenges and potential opportunities in this
direction. It can serve as a roadmap for future research in
this area, identifying gaps in our current understanding of
the use of LLMs in software testing and highlighting po-
tential avenues for exploration. We believe that the insights
provided in this paper will be valuable to both researchers
and practitioners in the field of software engineering, assist-
ing them in leveraging LLMs to improve software testing
practices and ultimately enhance the quality and reliability
of software systems.
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